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TORSION AND BUCKLING OF OPEIN SECTIONS*

By Herbert Wagner

Open section members are made of rolled or drawn sheet
metal and do not, like the closed or tubular sections, en-
close any area. Open sections are applied a great deal in
metal constructions because they can so easily be joined
to one another or to other plates; in addition, they are
accessible at all positions and so lend themselves to easy
maintenance and repair,

In contrast to closed sections, however, open sections
possess very small torsional rigidity. Thus it is known
that the torsional rigidity of an open member whose cross
section is not prevented from warping, is only as great as
that of the flat metal strip from which it is made. If,
however, warping of the section when the member is twisted
is prevented, for example, at one end of the section (at
least for a relatively short member), then longitudinal
stresses arise which offer a considerable resistance to
torsion., The computations of this effect of the longitu-
dinal stresses on the torsional rigidity have already been
carried out for certain types of sections, especially 1
beams,** In this paper we shall discuss the general prin-
ciples for open sections of any shape.

*"Verdrehung und Knickung von offenen Profilen." From

the 25th Anniversary Number of the Technische Hochschule,
Danzig, 1904-1929, pp. 329-343. This work appears in some-
what more extended form in the Zeitschrift fur Flugtechnik
und Motorluftschiffahrt, where also are given the results
of tests conducted by the aviation branch of tne Danzig
Technical High School.

**¥The work of C. Weber, Zeitschrift fur angewandte Mathe~
matik und Mechanik, 1926, on the same subject, came to my
attention after I had completed my paper. With respect to
the fundamental assumptions, the work of C., Weber agrees
with mine except that in my work the effect of the varia-
tionm in the longitudinal stresses is more accurately taken
into account. (Part Cpgp. equation &b, Cy in equation
6.) The work of H. Reissner, Zeitschrift fur Flugtechnik
und Motorluftschiffahrt, 1928, p. 384 (reference 1), in
which the bending accompanying torsion is treated for closed
sections, particularly box-shaped sections, should also be
mentioned.,
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Open sections are usually so designed that they are
not subject to any torsional stresses., But even where they
are applied as compression members, such sections often
give way by twisting or tilting long before the Eulerian
buckling load or the yield point is reached., Particularly
do the compression members used in airplane structures
whose ratio of load to length of member (reference 2) is
in general small and which are therefore made with very
thin walls, have a tendency to twist. In what follows
this torsion will be computed =2nd on the basis of the re-
sults obtained it will be possible to obtain a proper de-
sign of section in each case.*

The torsion of buckling members for the case where
they are centrally loaded, lcads to a problem in pure sta-
bility and is similar to that of the bending of stressed
beams.

PURE TORSION

Notation

E, G, modulus of elasticity (kg/cm?).

X, coordinate in direction of axis of member (cm).
P, angle of twist of member.
M, external torsional moment (kg cm).

GJp, torsional rigidity of section when warping of sec-
tion is not prevented (kg cm?®).

Mp, torsional moment due %to torsional rigidity of sec~
tion (kg cm).

T torsional stress corresponding to torsional rigidity
(shearing stress) (kg/cm2).

Cypg» Tesistance to combined bending and twisting of sec-
tion (em®),

*For contrally loaded anglcs, this twisting has already
bcen investigated by P. Bryan. Sce, for example, Rudolf
Mayer (reference 3).
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Mpq, torsional moment of cross section due to combined
bonding and twisting (kg cm).

€pd: ba’ Tva: longitudinal strain, longitudinal stress,

and shearing stress due to conmbined bending and
twisting.

The remaining notation is indicated on the diagrams.

If a member, the warping of whose cross section is
not prevented, is twisted, there arise in the cross sec-
tion shear stresses Tp, which may be computed with the

aid of the usual torsion theory for every shape of cross
section. The twisting moment due to these shear stresses
is of magnitude MT = @' G Jp where o' = dw/dx; and 1is

in this case equal to tne external twisting moment M. It
is assumed here that the shape of cross section of the mem-
ber and the twisting moment M and therefore also the an-
gle of twist mer unit length ©' 1s constant along the
length of the member. In this case therc arise no longi-
tudinal stresses in the member. Furthermore, no shear
stresses occur in the surface that is midway between the
two outer surfaces of the open section ("middle surface")
and also in the planes lying at right angles to this sur-
face (the "normal planes").* (See fig. 1.) Sections,

he strength of whose walls compared to the developed
length of the cross section, is so small that the following
statements on the cross-sectional twisting and the distri-
bution of the longitudinal stresses apply with sufficient
accuracy, we define as "open scctions."

The cpordinate wu (peripheral coordinate) measured
along the middle surface of the section and the coordinate
n, measured in the normal planes, give the distance of a
point to the middle surface. We denote by S the shear
center of the cross section {reference 4) and the straight
line which is the locus of the shear centers we shall call
the "shear axis."

*The gshear stresses at the ends of the section in the nor-
mal vlanes are confined to a small region for thin-walled
section; their effect on our considerations 1s slight also
for the reason that the variation in the longitudinal
stresses Opa due to the bending accompanying the torsion
in the direction of these planes (nn direction) is ounly of
gsecondary importance. (de“ is small compared to Cy4.:
see equation 8D.) - o
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We now consider a cross section normal to the shear
axis. As a2 result of the cross-sectional warping, the
points of this cross secticn move out of the plane by the
amount ¢ when twisted. The longitudinal fibers which
were straight before the torsion was applied, assume during
the torsion the form of helices whose axis is ths shear
axis. We project two neighboring longitudinal fibers ly-
ing in the middle surface onto a plane which is parallel
to the shear axis and normal to the line r Jjoining the
shear axis with the fibers. The projection of these fi-
bers forms with the projection of the shear axis the angle
rop'  (fig. 1). The two points of the fibers vwhich were
originally in the middle surface are now removed from it

by amounts { and ¢ + oy du, respectively. Since there

is no shearing stress in the strip of surface lying between
the two fibers, we have:

%é = sinar o = 1,9

so that the displacement £,; of any point in the middle
surface 1is of the amount

b

du

It
<
~

3]

o

This displacement also varies along the normal to the
surface n. It may be shown in a similar manner that

=== r, ®, so that at any position wu, n

u n

b=ty b= ([ ry dut J rpdam)= ¢ (wgbw)= of wo (1)
\ o) /

where W denotes the unit increase in the warping, that

is, for o = 1; w, and w, are the two components of

w whose meaning and magnitude are clear from the eguation.
Since the distance r, of the normal surface from the
shear axis in the second integral is a constant, w, =

rn Ne

We are still free to determine the lower 1limit of the
first integral; i.e., the longitudinal disnlacements may
still vary by a constant amecunt. This lower limit we
snall now choose so as to make the mean loangitudinal dis—
placement of the section equal to zero; that is,
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¥ F

J Ed&F =0 or f waF =0 (1a)
Since, as is easily seen, the mean value of Wy is
equal to zero, we have
F U
Jow, 6F = / wy s du=0 (1D)
o}

where U denotes the developed length of the cross section.
COMBINED BENDING AND TORSION

If the unit angle of twist o' 1is not comnstant so
that the torsional moment along the length of the section
is variable, and if the longitudinal displacement of the
section 1s prevented (for example, at one end), then, in
addition to the pure shear stresses Tp, we also have
longitudinal stresses oyy and torsional stresses Tpg

due to the combined bending and torsion.

We consider again (fig. 2) the two neighboring longi-
tudinal fibers of the middle surface. The strip now ap-
pears bent in the projection and the amount of bending is
rp'". As a result of this bending, one fiber of the strip
must stretch more than the other (similarly to the longi-
tudinal fibers of a beant beam), the difference in the

strain*) amounting to deyy = ro" du sin a, so that

014

—x== = B¢ rye The longitudinal stress in the middle sur-
ou u

face ig therefore
u
deu = Ec{j' f I'-U_ du

The lower limit of the integral we shall later determine.

T"

Ne stress Opa also variegs in the normal direction
n. We obtaln similarly

*This equation is valid oanly when variation in the shear-
ing stresses Tpg 1in the x-direction due to acbd/ax
(see equation 6a) may be neglected; that is, for members
that are not too short; sce also following footnote and
references.,
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=== BP' ry, so that oOpgp = EY' rpn

Here Oypg, denotes the longitudinal stress at the position

of the normal plane of any section in addition to the mean
longitudinal stress which (on account of the linear varia-
tion of den)is equal te the longitudinal stress Opdu

- 1n the middle surface at this position w. We thus obtain
for the total loangitudinal stress

n
Oba = Obgu T %pan = Em"(;/ r, du + r, n) (2)

Since there is no longitudinal force acting on the
section

bl

Comparing equation (2) with eguation (1) and (la), we
see that {(21b)

Gpg = By (wy + wy) = Eg" w (21)

The longitudinal stresses Opg should not give a re-

sulting bending moment (since there is no such moment act-
ing on the member). It may easily be shown that this con-

dition may be satisfied if and only if the magnitudes 1

and ry refer to the shear center; that is, when the sec-
tion twists about the shear axis, a2lso in the case whoere
longitudinal stresses arise.

These longitudinal stresses arising during torsion
set up a resistance against the torsion, which we shall
now compute. We consider a member of length I, the ends
of which are acted on by torsional moments M and, along
its length, is also acted on by external moments of magni-

du

tude iz = e The internal work cf deformation is
G JT L . L F
- — . 2
Ay = Byp + Aypg = 5 c;f o' dx + 5o [/ Bg” dx aF

The first term on the right-hand side Sives the work
done by the -shearing deformation as n result of the stress-
es Tp walle the second term is the work corresponding to

the longitudinal strcsses Opge The work of deformation
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corresponding to the shear stresses Typg which depend on
the variation of de in the x~direction (see below) has
been neglected.*

Taking account of eguation (2Db), we obtain
1 ¥ L L .
Ajpa = £ B/ wP aF J "2 dx = %E Coa J "% ax  (3)

where, Tor short, we have written Cyg 1in place of one
integral.

We now give the deformed condition a variation &,
where &0 may vary in any manner along the length of the
member except that we assume the boundary conditions

for x=0 and x =1 8o = 0 and BJO!' =0

According to the principle of virtual velocities,
§A;y - BAy = 0, where A, denotes the work of the exter-

nal torsional moments, the work at the ends of the member,
on account of conditions (4), being zero. We thus obtain:

L L

L
‘% GJT(J §(p'?) dx+»% Ecbdof 8(¢”2) dx —df m & dx = 0

Performing the variation and integrating partially
(taking account of eguation 4) we obtain, after collecting
termg under a common integral sign,

L

S (= 6Ip®" + ECpqg@*" - m) 8 dx = 0
o]

Since thig integral must vanish for any arbitrary function
S, thac differential equation for the combined torsion
and bending reads:
aM
o wuo \TR— — . aM
E Cpq @ G Jpo + m i (5)

Integrating once, we obtain:

- B C'bd_CD"” + G JTCP' = Mbd + MT = M

(5a)

*Whis corresgonds to the assunmption usually made in the
bending theory that for a bent beam that is not too short,
it is allowable to neglect the deformation due to shear in
comparison with the deformation due to bending.
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From this equation we see that to the longitudinal
stresses 0Opg resulting from the bending accompanying the

torsion there corresponds an intermnal torsional moment of
magnitude
‘ - - e
Mbd = E G50

where (see equation 3)

F
Cpg = J w2 aF (5)
(de = gstrength in combined bending and torsion)

Having given this purely formal derivation for de,
we shall next consider the torsional moment Mypg result-

ing from the bending accompanying the torsion. Since the
longitudinal stresses opg vary in general along the x-

direction, there must arise in any cross section shear

stresses Ty, which we split up into two components, T...

due to variation in the mean longitudinal stress Tpdu’ and
Thdn due to the longitudinal stress Opdn®

In the same way as for the usual bent beam we may see
from the equilibrium of a strip of width du and length
dx (see fig. 2) that, to the variable longitudinal stress-
€S Opgy’ there must correspond the slhiear stresses Thaw

which in the normal planes act in the direction of the lon-
gitudinal axis and in the cross section act in the direc-
tion of the wuw axis. We have (see equations 2 and 2b)

o0
d (deu s) = «B%%g dF = E¢' w, 4F
At any position wu, therefore,
u
Tpgw s = B f wy s du (6a)
o)

The moment taken up by the shear stresses may now be
computed as
F U
Mpau™ / Tpau Tu &F= 6[ Ty G0 Tpgy S
U u
= B! [ ry du f wy s du
0 )
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By integrating partially, taking into account equations
(1) and (1b), we obtain:
F
Mpgy = = BO'" / w,® dF = - EQ' Cyay

The shearing stresses due to the varying Opg, act

in the direction of n and vary parabolically (in the same
manner as for the bent beam of rectangular cross section).
The corrcsponding moment may be computed in the same manner
as above and is equal to

F
Mbdn: - Eop'! f Wne 4F = - HEop'M den

Now Mypgq = Mpgy + Mpgn and since, as it is easy to
prove, de = deu + den’ the results of this considera-

tion agree with equation (6). We may therefore split the
resistance Cypg due to the bending accompanying the tor-
gsion into the two parts
F ¥ U

— . - — 2 = —= 3 2

Cpau = S wy2 aF and Cyg, = J Wy dF 15 J s r® adu
(6D)

It should still be mentioned that the shearing

stresses Toa give zero for a resultant shearing force.

Since the solution of differential equation (5) is
also well known for this special problem, we need g0 no
further into 1it.

TWISTING OF COMPRESSION MEMBERS

If a relatively thin-walled open section (for exam-
ple, an angle) is put under compression, each leg tends to
buckle in a direction normal to its plane (fig. 3). The
part of the leg lying against the joining edge supports
itself against the other leg which offers a large resist-
ance moment against these stregses and comsequently hin-
ders the buckling of the first leg, and conversely.

Two modes of buckling are possible, namely, both legs
may buckle in the same direction so that the whole section
twists to one side, or the legs may bDuckle in opposite di-
rections, in which case there ig a deformation in the
cross section and the work ¢f deformation is therefore much

greater in this case., Since, where there are two possible
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modes of buckling, the one to cccur first is that at which
the work of deformation is smaller for the same work of
the external loads, the first mode of buckling will ocecur,
i.e., the angle will twist aside

We should now like to discuss the general case. Let
an open section which was initially straight be acted on
by a compressive and - in general - eccentric locad P,
whose line of action is parallel to the axis of the member.
We shall denote the mean compressive stress by GPO = P/F

and by 0p, the compressive and bonding stress that va-

ries over the cross section, assuming these simply comput-
ed stresses as known.

We shall assume further for our computation that the
bending due to the eccentricity of P and the angle of
twist ® are small in magnitude so that square terms,
products and their derivatives may be neglected.

We consider at any section the equilibrium of the ex-
ternal with the internal forces. A necessary consequence
of this congideration is that the twisting of the member
about the shear axis must take place. (See beclow.)

Due to the twisting, longitudinal stresses Opq are
set up which give a resultant zero. (See equation 2a.)
The shear stresses rising from the twisting give as a re-

sultant a pure tors onal moment of magnitude. (See equa-
tion 5a.)

M'bd + M1 = - F de Cp‘“ + G JT CP'

The stresses 0p are in the direction of the longi-

tudinal fibers of the section so that, due both to the
twisting and bending of the section, they are obliquely
inclined to the direction of the original axis. We shall
now consider more closely the horizontal cowmponents of
these stresses.

l. EHorizontal components of op due to the twisting.-

The angle of inclination of a fiber as a result of the
twisting is rg@' so that the horizontal component of Op

is 0p r@' and its direction is normal to r. These

stresses produce a moment about the shear center of magni-
tude
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F Foop
. : . 2
MPw = @ [ =@ Op dF = o! GPO S EEW r2 4F = o' P igp
0

where for briefness we have set the easily evaluated inte-
gral

o2

F
/ 7" r? aF = 1" (7)

tf 1

0

For a centrally acting force P, MPcp = op_ Jg where
)

JS ig the polar moment of inertia of the cross section

about the shear axis. The setting up of this moment MPcp
is the reason for the twisting asgside of centrally com-

pressed open sections.

2. Horizontal components of op due to the bending.-

We denote the principal moments of inertia of the cross
section by J and Jﬁ’ and the coordinates measured

Pr]

from the shear center in the direction of the axes of the
principal axis of inertia by mg and {g. The remaining
notation is indicated on figure 4.

We split up the bending moment due to the eccentric-
ity of P into two components about the principal axes of
inertia. The bending angle due to the bending about the
M axis is

dmn ~ X

dx

o

<
¥

St

o

o

X fop)

The limits of this integral we leave undetermined
since we shall later differentiate. The horizontal compo-
nents Op z—— of Op act in the direction of the { axis,

and produce about the shkcar center a torsional moment of
magnitude

F s .
ay. dy P2 ¢ 7 X
mn G A I = “OP 'SP
/%% ix Ms &F = gy~ P nsp 7 - F J S axz

In a similar manner we compubte the torsional moment
due the bending about the € azis. For the total torsion-
al moment duve to the bending, we then obtain
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2 2
LB (50P sz . Mo §sl P°3 X
'ﬁ"

Moo = ) f éx = - —— [ ax (8)
pr\' At

where the expression in the parenthcses is denoted by 3B.

Duc to thc displacement of the center of gravity of
the section as a result of the twisting about the shear
center and also due to the bending, the eccentricity of
the load P varies along 1e¢9to of the member and thus
additional bending moments arise. It may here be stated
without proof that no moment about the shear center is pro-
duced by these longitudinal stresses arising from the ad-
ditional bending moments and which corrcspond to a slight
increase in twist and bending, but that the corresponding
shear strcssegs, however, prouuce cross forces at the shear
center which just Valance the cross forces of the horizon-
tal components discussed under paragraphs 1 and 2, so that
in every respect there is equilibrium with the external
forces, provided the condition

is satisfied.

We must still consider the very important case where
the section is elastically supported against twisting, so
that at every position there is exerted an external tor-—
sional moment M = 5  proportional to the twisting at
this position and oppositely dirccted. Thus let % be
Ziven and assumed constant along the entire length of the
member., Again considering the equilibrium at a cross secc-
tion, we have the additlonal torsional moment

X
- My =/ % o dx

If we now set

and differentinte with respect to x wec obtain the dif-
ferential equation of the twisting:
a

=i (8)

P E Cpg + " (P igp® - G Sm) + @ 5

|Gl
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The solutions of this differential cquation are well
known and we may therefore confine ourselves to the most
important casc occurring in practice, namely, wherc the
warping of the end sections of the member is not prevented.
Let the boundary condition be:

For x =0 and x =1L ® =0 and o" =0

We neglect at first the part Mpp due to the bending of

the section, thus setting B = 0. If there is no elastic
support % ~ 0, the solution of the differential equation

is @ = @ sin %? (9o = angle of twist in the middle), =nd

we obtain by substituting the buckling load P into equa-
tion (8):
1 4 2
1SP L

Where there is elastic support the computation shows
(in a similar manner as for the usual elastically support-
ed buckling rod) that one or more waves of deformation are
formed according to the amount of elastic support and the
length of the hember. If we set the length of a wave equal

to L/n, where n 1is an integer, so that ¢ =
e sin QEE ) we obtain the buckling load
1 2. 2 -2
P = —3 (G JT + Il‘—g-“ B cbd + *g“L"g- E) (9&)
isp L nmw ©

FTigure 5 shows the buckling loads for different val-
vwes of n and L. Since a member always buckles with a
number of waves corresponding to the minimum buckling load,
the number of waves increases with length of member and for
very great lengths the buckling load becomes almost inde-
pendent of the length of the member. TFor loeg members we

obtain by differentiation of equation (9a) a%§”‘: 0) the
n

wave lengths L,, corresponding to the minimum buckling

loads

%EQQ (10)
m

5

B

By substituting this value in equation (92a) we obtain
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the magnitude of the buckling load (or, more accurately,
the minimum buckliang load) for L £ IL;:

- 1 / m \
Posn = 7735 (G Jn + 2 —~ E C ) 10a
min iSPD \ T v/:; bd J ( )
For L = L,, only ore wave is formed, so that
1 12 12 m)
P = g (G Jp + Ty B Opg + 2o I 10
iSPa T 1z bd T E ( )

1f the load acting on the member is smaller than the
buclkling load given by this eguation, there will be mo
twisting of the member {(always assuming that R = 0). If,
however, the load does attain this value, the member col-
lapses abruptly as a result of the twisting {(pure stabili-
ty problem).

If we take into account the lateral bending of the
membter (B # 0) we are led to considerably more complicat-
ed solutions. We obtain, in fact, four forms for the so-
lution, according to whether or not the member is elastic~—
ally supported against twisting and whether P 1is small
or already near the buclling load. Tinese solutions show,
however, that o first becomes very large when P attains
the value given by the previous equations - which valuae,
therefore, we may also consider in this case as the buck-
ling load. The eccentricity is taken into account by comn-
puting the value of 1igp from eguation (7).

We obtain, for example, for a nomnelastically supported

member and for a large load P, the solution:
P B ¢ 2
P = e £~w9§—g (L;gggwgmé sin W xtcos W x-1 - Q%E(L—X)
(Pigp -GJgp) L sin w °
v (11)
Pigp? - GJp
we = .88 T 7Y - (11a)

We see that the buckling load is reached for wlL = T,
from which we obtain the value of P given in equation
(8). TFor smaller loads P, we may compute from egquation
(11) the change in form and stress condition and thus deter-
mine when the yield point of the materisl is reached and
the member actually collapses.
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We shall not consider the solutions for the other
cases.

It should be pointed out that for centrally loaded
buckling members there is no connection between the Eule-
rian buckling and the twisting; the section 1is to be com-
puted either for buckling (Bulerian) or twisting, according
to which phenomenon corresponds to the smaller bdbuckling
load. ¥For long members eccentrically loaded, 1t is possi-
ble for the bending due to the eccentricity to become so
large that the stress distribution in the middle of the
member is considerably different from that at the ends.
For this case we suggest that the stress distribution in
the middle of the member be first computed without taking
the twisting into account, and then this stress distribu~
tion used as a basis for calculation of the twisting.

In order to give an idea of the magnitude of these
effects there are shown in table I the theoretical buck-
ling loads for two duralumin sections of equal cross-sec-
tional area F = 0,42 cm® and equal width of legs 3 cm.
The sections are showa in figure 6.

TABLE I |
Form of | 1000 Jp | 1000 Cyg | ipp? [Theoretical buckling load
cross m o 0 m 7
section P 5 -
cm? em® em? |1=20] 40]80 | 20 | 40| 80
. 0.695 0.515 3 65 | 63|62 | 86 | 86| 86
B | .540 | 5.7 4 188 | 73(44 | 218 |1711171

If such sections are used as spars for sheet metal
beams so that tensile forces act laterally on it (refer-
ence 5), back moments are produced during the twisting,
the magnitude of which is proportional to the amount of
twisting. If, for example, thegse sections are loaded lat-
erally with a load of 1 kg/em, % = 3. The buckling loads

of the members are given for this value, not taking the
bending moments into account. It may be seen that now the
section with the edges turned over is more favorable for
all lengths since, according to eguation (10a), the value
€ypg raises the buckling load, particularly when there 1is
elastic support.
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In order to show the large effect of eccentric load-
ing on the buckling load, there is indicated in figure 7
the ratio of the buclkling loads P for an angle loaded
eccentrically in the plane of symmetry (3 = 0) to the
buckling load P, of the centrally loaded section. The

nearer to the edge of the angle the force acts, the larger
ig the buckling load until finally there is no question of
twisting,

It should be further noted that in tests of compres-
sively loaded sections set between parallel plates, the
twisting likewise begins at the computed loads, but after
the twisting no load acts on the legs so that the line of
action of the compressive force moves toward the edge and
thus a higher compressive force may be borne. The corre-
sponding computation is relatively easy to make.

If very thin-walled angles (or sectiomns of similar
cross section) are eccentrically loaded in such a manner
that the legs are highly loaded while the edge is less
loaded, then the phenomenon occurs of each leg buckling in
opposite direction. (The profile thus does not twist.)
This phenomenon is easily explained, though the necessary
computation is difficult. The bdbuckling load is smaller
than womld be the case if the section twisted.

It may be remarked, finally, that only such sections
tend to twist aside for which the value of de/iSPo is

small compared to the moment of inertia of the cross sec-
tion. (See equation 9.) TFor other sections, provided the
yield point is not reached first, there occurs egither Eu~
lerian buckling or esch leg buckles individually without
the member as a whole twisting aside. If the legs of a

U section are turned over they may be cousidered elastic—
ally fixed, and with the aid of ths preceding principles
it is poscible to compute at least approximately the twist-
ing (buckling) of the leg. TFor the computation of the
buckling of legs that are not turned over, the methods of
Timoschenko for rigidly fixed or entirely free plates may
be cmployed (reference 6).

Translation by S. Reiss,
Wational Advisory Committee
for Aeronautics.



W.,A,C,A, Technical Memorandum No. 807 17

2|

REFERENCES

t

Reigsner, H.: XNeuvere Probleme aus der Flugzeugstatik.,
ZF.M., September 28, 1926,

Wagner, Herbert:; Remarks on Ailrplane Struts and Gird-
ers Under Compressive and Bending Stresses. Index
V&lues. T.E-’Io No . 500, E\TtAlCO-A'O, 1929.

Mayer, Rudolf: Die Xnickfestigkeit, Berlin, 1921, p.
35,

Foppl, B.: Drang uad Zwang, 1928, p. 121,
Wagner, Herbert: Structures of Thin Sheet Metal; Their
Design and Construction. T.!M. Mo. 490, W.A.C.A.,

1928,

Aurbach-Hort: Handbuch der physikalischen und tech-
nischen Mechanik, vol. IV, no. 1, 1929, p. 128.



N.A.C.A-c TGChnical Memorandm NOQ 807 Figs. 1.2'3.4’5'6’7.

[ i —3 e
1 1 TQJ—.

Q06 [qor

|” %a | %

Fig. 6



